5=1/4(q^2)

Simple and best practice solution for 5=1/4(q^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5=1/4(q^2) equation:



5=1/4(q^2)
We move all terms to the left:
5-(1/4(q^2))=0
Domain of the equation: 4q^2)!=0
q!=0/1
q!=0
q∈R
We get rid of parentheses
-1/4q^2+5=0
We multiply all the terms by the denominator
5*4q^2-1=0
Wy multiply elements
20q^2-1=0
a = 20; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·20·(-1)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*20}=\frac{0-4\sqrt{5}}{40} =-\frac{4\sqrt{5}}{40} =-\frac{\sqrt{5}}{10} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*20}=\frac{0+4\sqrt{5}}{40} =\frac{4\sqrt{5}}{40} =\frac{\sqrt{5}}{10} $

See similar equations:

| 2(x-5/2)^2-15/2=0 | | (x+8)^2=-49 | | 1/6-2x=-2x+7/6 | | 4x-1=13x-47 | | -9/45=-x/45 | | 0=(2x^2)-5x-512 | | x^2+12x-33=3x+3# | | (2^​3​​)+11x^2​​+5x=118 | | x^2+12x-33=3x+3 | | 20=q^2 | | 6x-4(x-10)=50 | | (7/3x+1)-(18x/3x+1)=-6 | | 35.2x-369600=27.2Y-316800 | | (7x+6)/8+(2x-8)/3=-5 | | F(x)=3x-10F(x)=20 | | b/11-8b/11=42/11 | | 1/9(4t-7)=10/9t-t+7/18 | | (n)(n-1)(n-2)(n-3)=0 | | 18=-6x^2+6x | | 7x/5-3=11 | | 7x7-6x=10 | | 4(x–2)=3x+6 | | 8x-8(x+3)=3(x+5)+18 | | 13-7x+6+x=-5x-5+2x | | X+5/10=1/5+x-5/8 | | 2,6-0,2b=1,1-0,5b | | 15x^2-11x-22=0 | | 9*(x-4)-5x=x-12 | | 7a-10=2-40 | | x=3.14*128 | | (x-9)^2/5=9 | | 3x-17=6x+4 |

Equations solver categories